Comparison of [HSO4]−, [Cl]− and [MeCO2]− as anions in pretreatment of aspen and spruce with imidazolium-based ionic liquids
نویسندگان
چکیده
BACKGROUND Ionic liquids (ILs) draw attention as green solvents for pretreatment of lignocellulose before enzymatic saccharification. Imidazolium-based ILs with different anionic constituents ([HSO4]-, [Cl]-, [MeCO2]-) were compared with regard to pretreatment of wood from aspen and spruce. The objective was to elucidate how the choice of anionic constituent affected the suitability of using the IL for pretreatment of hardwood, such as aspen, and softwood, such as spruce. The investigation covered a thorough analysis of the mass balance of the IL pretreatments, the effects of pretreatment on the cell wall structure as assessed by fluorescence microscopy, and the effects of pretreatment on the susceptibility to enzymatic saccharification. Torrefied aspen and spruce were included in the comparison for assessing how shifting contents of hemicelluloses and Klason lignin affected the susceptibility of the wood to IL pretreatment and enzymatic saccharification. RESULTS The glucose yield after IL pretreatment increased in the order [Cl]- < [HSO4]- < [MeCO2]- for aspen, but in the order [HSO4]- < [Cl]- < [MeCO2]- for spruce. For both aspen and spruce, removal of hemicelluloses and lignin increased in the order [Cl]- < [MeCO2]- < [HSO4]-. Fluorescence microscopy indicated increasingly disordered cell wall structure following the order [HSO4]- < [Cl]- < [MeCO2]-. Torrefaction of aspen converted xylan to pseudo-lignin and changed the glucose yield order to [HSO4]- < [Cl]- < [MeCO2]-. CONCLUSIONS The acidity of [HSO4]- caused extensive hydrolysis of xylan, which facilitated pretreatment of xylan-rich hardwood. Apart from that, the degree of removal of hemicelluloses and lignin did not correspond well with the improvement of the enzymatic saccharification. Taken together, the saccharification results were found to mainly reflect (i) the different capacities of the ILs to disorder the cell wall structure, (ii) the recalcitrance caused by high xylan content, and (iii) the capacity of the [HSO4]--based IL to hydrolyze xylan.
منابع مشابه
Evaluation of four ionic liquids for pretreatment of lignocellulosic biomass
BACKGROUND Lignocellulosic biomass is highly recalcitrant and various pretreatment techniques are needed to facilitate its effective enzymatic hydrolysis to produce sugars for further conversion to bio-based chemicals. Ionic liquids (ILs) are of interest in pretreatment because of their potential to dissolve lignocellulosic materials including crystalline cellulose. RESULTS Four imidazolium-b...
متن کاملRecalcitrance of Wood to Biochemical Conversion - Feedstock Properties, Pretreatment, Saccharification, and Fermentability
Lignocellulose is an inexpensive and abundant renewable resource that can be used to produce advanced biofuels, green chemicals, and other bio-based products. Pretreatment and efficient enzymatic saccharification are essential features of bioconversion of lignocellulosic biomass. The aims of the research were to achieve a better understanding of the recalcitrance of woody biomass to bioconversi...
متن کاملIn situ determination of lignin phenolics and wood solubility in imidazolium chlorides using (31)P NMR.
Corn stover, Norway spruce, and Eucalyptus grandis were pulverized to different degrees. These samples were subjected to quantitative analyses, upon the basis of predissolution into the imidazolium chloride-based ionic liquids [amim]Cl and [bnmim]Cl followed by labeling of hydroxyl groups as phosphite esters and quantitative (31)P NMR analysis. Analysis of different pulverization degrees provid...
متن کاملAn Improvement to the Properties of GAP Binder with Energetic Ionic Liquids
Glycidyl azide polymer (GAP) is used as a binder in the propellants. Energetic ionic liquids are used as a plasticizer to correct the properties of polymer. In this study, first ionic liquid was bonded to the GAP by certain amount and then the energetic anions of nitrate (NO3) and azide (N3) were used to exchange anion. FTIR analyses confirm accurately anions exchange. DSC, viscometer and heat ...
متن کاملH-imidazolium Acidic Ionic Liquids as Efficient Catalysts in the Synthesis of Xanthenes under Solvent-Free Conditions
Bifunctional acidic ionic liquids, having both H-imidazolium and -SO3H groups as cation moieties (H-BFAILs) and CF3SO3- as anion, were synthesized in high yields. These H-BFAILs showed significant hydrophilic properties, lower acidity and higher thermal stability relative to common ionic liquids, due to their unique structures. The (propyl or butyl-3-sulfonic) imidazolium trifluoromethane sulfo...
متن کامل